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ecreased Anterior Cingulate Volume in
ombat-Related PTSD

teven H. Woodward, Danny G. Kaloupek, Chris C. Streeter, Christelle Martinez, Marie Schaer,
nd Stephan Eliez

ackground: Neuroanatomical data point to functional relationships between the anterior cingulate cortex (ACC) and subcortical
enters regulating fear, in particular, the amygdala. Functional brain imaging has disclosed divergent patterns of ACC activation in
ersons with posttraumatic stress disorder (PTSD). In addition, two preliminary structural imaging studies have found evidence of
maller ACC volume in PTSD. We explored associations between PTSD and ACC volume in a relatively large sample of adult combat
eterans in which PTSD, lifetime alcohol abuse/dependence, and Vietnam versus Gulf War service were crossed.
ethods: Subjects were US military combat veterans of the Vietnam and Gulf Wars recruited from two metropolitan areas served by

llied Department of Veterans Affairs PTSD treatment/research centers. Anterior cingulate cortex volume was analyzed as a function
f grouping factors with and without adjustment for body size.
esults: Posttraumatic stress disorder was associated with smaller anterior cingulate cortex volume. This effect persisted in subjects
ithout histories of alcoholism, did not interact with cohort effects, and was not modified by adjustment for body size.
onclusions: Anterior cingulate cortex volume is substantially smaller in association with combat-related PTSD, a finding broadly

onsistent with cingulate hypofunctionality in that disorder.
ey Words: Stress disorders, posttraumatic, magnetic resonance
maging, gyrus cinguli

een interest has emerged in the role that the anterior
cingulate cortex (ACC) might play in posttraumatic stress
disorder (PTSD) (Hamner et al 1999; Pitman et al 2001;

aber et al 2003; Villarreal and King 2001). Of particular interest
re this region’s close neuroanatomical relationships with sub-
ortical components of the “central fear system,” including the
mygdala and locus coeruleus (Carmichael and Price 1995; Jodo
nd Aston-Jones 1997; Jodo et al 1998; McDonald et al 1996; Vogt
t al 1979, 1987, 1995; Vogt and Pandya 1987). If the ACC
upplies inhibitory regulation of the amygdala, then attenuation
f that regulation could provide an avenue for understanding
ultiple features of PTSD. Absolute or relative hypoactivation of
CC during tasks involving exposure to traumatic reminders in
ersons with PTSD has now been replicated in three laboratories
Bremner et al 1999a, 1999b; Lanius et al 2001, 2003; Shin et al
999, 2001). Accompanying such findings are indications that the
CC is coupled to the hypothalamic-pituitary-adrenal (HPA) axis.
he cingulate cortex contains the largest concentration of recep-
ors for corticotropin-releasing factor (CRF) among all cortical
reas in the brain of the rhesus macaque (Sanchez et al 1999). As
ell, there have been observations of pyramidal cell apical
endritic remodeling in ACC following glucocorticoid challenge
Wellman 2001) and restraint stress (Radley et al 2004), similar to
hose originally motivating exploration of hippocampal volume
n PTSD (Bremner et al 1995; Pitman et al 2001). Taken together,
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these findings suggest that reduced ACC volume might be found
in association with PTSD.

Two preliminary structural magnetic resonance imaging
(MRI) studies have made observations compatible with this
hypothesis. Rauch et al (2003) reported smaller pregenual ACC
and subcallosal cortex volumes (the latter combining portions of
Brodmann’s areas 32, 11, and 25) in nine Vietnam combat nurses
with PTSD as compared with nine combat nurse control subjects.
These authors did not find smaller dorsal ACC volume and
invoked the preferential coupling of pregenual ACC and sub-
genual cortex to amygdala to explain this specificity. In their
sample, ACC volume reductions were not associated with co-
morbid major depression. Using voxel-based morphometry, Ya-
masue et al (2003) found evidence of ACC gray matter hypoden-
sity in 9 survivors of the Tokyo subway sarin attack with
diagnoses of lifetime PTSD (1 also met criteria for current PTSD)
as compared with 16 survivors who had never met criteria for
PTSD. Here, we report on an effort to replicate these findings in
a well-characterized sample of 99 survivors of combat and
military operational stress. This sample also allowed us to
account for variance associated with lifetime alcoholism and, to
a limited degree, with normal aging.

Methods and Materials

Recruitment and Screening
Subjects provided written informed consent in accordance

with procedures of the Institutional Review Boards of either
Stanford University Medical School/VA Palo Alto Healthcare
System or Boston VA Medical Center and the McLean Hospital.
Subjects were recruited through a combination of advertising and
word-of-mouth contacts with current and past patients and
research volunteers. Initial screening established that subjects
were US military veterans of the Vietnam Conflict or the Persian
Gulf War (GW) who had been exposed to substantial military
operational stress but now reported no current or past central
nervous system (CNS) disease or psychosis and no alcohol or
substance abuse/dependence in the last 6 months. Screening
exclusions were based on low stress exposure, current alcohol or
substance use, high fever(s), loss of consciousness requiring

medical attention, or known contraindications to magnetic reso-
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© 2005 Society of Biological Psychiatry



n
v
r
w
a
l
t
w
t
t
c
s

s
C
(
o
n
s
t
P
a
b
d
m
V

P

i
w
u
1
S
1

T

N
A

%
%
%
%
%
A
Y
C
B
S
M
C
W
L
R

f

M
A

S.H. Woodward et al BIOL PSYCHIATRY 2006;59:582–587 583
ance (MR) scanning. As a result of formal diagnosis, additional
olunteers were excluded because they were negative for cur-
ent military PTSD but positive for lifetime civilian PTSD (18), or
ere positive for current/recent alcohol/drug abuse (14), prob-
ble brain damage (6), or psychosis (2). In addition, four subjects
ater withdrew due to fatigue or nicotine withdrawal; two missed
heir scanning appointments and were unreachable; and five
ithdrew due to claustrophobia. After participating, 11 addi-

ional subjects were excluded due to imaging artifact and 2 due
o previously undiagnosed brain injury. The final sample in-
luded 55 subjects from the Palo Alto site and 44 from the Boston
ite. Completing subjects were paid $200.

Final sample characteristics are presented in Table 1. The
ample included 99 military veterans of either the Vietnam
onflict or the Gulf War. Subjects classified as PTSD-positive
PTSD�) met criteria for current PTSD as a result of experiencing
ne or more military traumas. Subjects classified as PTSD-
egative (PTSD-) had also been exposed to military operational
tress but were free of diagnosable PTSD, current or lifetime, due
o military or civilian trauma. (All control subjects met DSM-IV
TSD Criterion A1, and all but three met Criterion A2). Alcohol
buse/dependence-positive (ETOH�) subjects were so classified
ased on meeting lifetime but not current alcohol abuse or
ependence criteria (minimum period since meeting criteria: 6
onths). Gulf War veterans had a mean age of 38 years, and
ietnam veterans had a mean age of 56 years.

sychometrics
Subjects meeting screening criteria were administered both

nterview and self-report measures. Semistructured interviewing
as conducted by trained and experienced Masters-level staff
sing the Clinician-Administered PTSD Scale (CAPS) (Blake et al
997) for PTSD symptoms and selected Axis I modules of the
tructured Clinical Interview for the DSM-IV (SCID) (First et al
995) addressing mood episodes (e.g., major depression), psy-

able 1. Subject Characteristics and Anterior Cingulate Cortex Volumes

Vietnam Cohort Persian Gulf

PTSD� PTSD� PTSD�

38 25 13
ge 53.5 (2.6) 56.0 (3.5) 37.0 (5.7)

Male 100 100 77
Caucasian 65.8 92.0 53.8
Current MDD 78.9 4.0 69.2
Lifetime MDD 89.5 28.0 76.9
Lifetime ETOH 44.7 44.0 46.2

ge at ETOH � Onset 24.6 (8.0) 21.5 (8.7) 26.7 (5.0)
ears of Education 14.4 (1.8) 15.5 (2.2) 14.3 (1.7)
ombat Exposure Scale 29.8 (9.9) 24.2 (8.2) 19.9 (11.8)
DI 25.0 (8.9) 4.6 (3.7) 21.0 (7.3)
MAST 3.9 (4.0) 2.1 (3.8) 3.3 (3.6)
ISS 122.8 (18.8) 68.2 (15.8) 107.8 (15.8)

APS Total Severity 75.9 (18.4) 8.8 (9.0) 75.9 (19.9)
AIS Vocabulary Score 47.4 (12.0) 55.5 (7.1) 45.6 (12.4)

eft ACC Volume in mL 6.9 (1.7) 8.6 (1.7) 6.6 (2.0)
ight ACC Volume 7.9 (3.0) 8.9 (2.0) 8.3 (2.1)

Tabulation of demographic, diagnostic, and psychometric data by PTSD
actors are indicated in columns headed PTSD, COHORT, and ETOH, respect

PTSD, posttraumatic stress disorder; ETOH, alcohol abuse/dependenc
ichigan Alcohol Screening Test-Short Form; MISS, Mississippi Scale for C

dult Intelligence Scale; ACC, anterior cingulate cortex; n.s., not significant.
chotic and associated symptoms, alcohol and other substance
use disorders, and anxiety and other disorders (e.g., panic
disorder). Self-report instruments included the Combat Exposure
Scale (CES) (Keane et al 1989), the Life Events Checklist (LEC)
(Blake et al 2000), the Mississippi Scale for Combat-Related PTSD
(MISS) (Keane et al 1988), the Beck Depression Inventory (BDI)
(Beck et al 1961), and the Michigan Alcohol Screening Test-Short
Form (SMAST) (Selzer 1971).

Brain Imaging
Magnetic resonance imaging was performed using two 1.5 T

General Electric Signa scanners (GE, Fairfield, Connecticut) at
similar hardware and software revisions, one at the Diagnostic
Radiology Center of Veterans Affairs Palo Alto Healthcare System
and one at the Brain Imaging Center of McLean Hospital
(Belmont, Massachusetts). Coronal images were acquired with a
three-dimensional (3-D) volumetric pulse sequence (repetition
time [TR] � 35 milliseconds, echo time [TE] � 6 milliseconds, flip
angle � 45°, number of excitations [NEX] � 1, matrix size � 256
� 192, field of view � 24 cm2, slice thickness � 1.5–1.7 mm, 124
slices). Image optimization was performed in BrainImage (Brain-
Image 5.x, Stanford University, Stanford, California) following
the standard protocols of the Stanford Psychiatry Neuroimaging
Laboratory. Image optimizations included correction for inhomo-
geneity artifact, resampling to cubic (.9375 mm3) voxels, posi-
tional normalization by reference to the anterior and posterior
commissures and intrahemispheric fissure, skull-stripping, tissue
segmentation based on a constrained fuzzy algorithm (Reiss et al
1998), and parcellation according to a modified Talairach grid
(Kates et al 1999; Talairach and Tournoux 1988).

Manual delineation of the cingulate cortex followed a proto-
col developed by one of the authors (SE). Left and right cingulate
gyri were first traced in sagittal view on slices 5 millimeters lateral
to the midline. Next, a coronal view was used to draw the
superior, inferior, lateral, and medial boundaries of the cingulate

rt

PTSD COHORT ETOH Interactions�

3.9) n.s. p � .001 p � .011 PTSD � COHORT p � .027
PTSD � COHORT � ETOH

p � .001
n.s. p � .001 n.s. n.s.

p � .041 n.s. p � .041 n.s.
p � .001 p � .037 n.s. n.s.
p � .001 p � .012 n.s. n.s.

n.s. n.s. n.s.
5.9) n.s. n.s. n.s.
1.9) p � .016 n.s. n.s. n.s.
6.0) p � .001 p � .001 n.s. COHORT � ETOH p � .041
4.0) p � .001 n.s. n.s. n.s.
.9) p � .001 p � .035 p � .001 PTSD � ETOH p � .012
11.1) p � .001 p � .001 p � .038 n.s.
11.0) p � .001 n.s. n.s. n.s.
8.0) p � .001 n.s. n.s. PTSD � ETOH p � .032
1.9) p � .001 n.s. n.s. n.s.
2.1)

nosis and COHORT. p-values of main effects associated with the grouping
Column headed Interactions lists any interactions.

DD, major depressive disorder; BDI, Beck Depression Inventory; SMAST,
t-Related PTSD; CAPS, Clinician-Administered PTSD Scale; WAIS, Wechsler
Coho

PTSD

23
36.7 (

83
69.6

4.3
17.4
39.1
22.1 (
15.0 (

8.6 (
4.3 (
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59.0 (
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7.6 (
9.4 (
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cortex and adjacent white matter (see Figure 1). These bound-
aries were defined medially by the interhemispheric cortical
surface and laterally by a line connecting the deepest extension
of the cingulate sulcus to the deepest extent of cingulate gray
matter ribbon directly superior to the corpus callosum (CC). The
region of interest excluded tissue subjacent to the genu of the CC
and posterior to a line dropped from the apex of the genu.
Excessive intersubject variability in landmarks precluded delin-
eation of subgenual cingulate cortex.) Posterior to the division of
the splenium of the CC, the inferior border of the cingulate was
defined by the calcarine fissure. Lastly, a dynamic Talairach grid
was fitted on each brain (see Figure 2). In the rostrocaudal
direction on a coronal anterior commissure-posterior commis-
sure (AC-PC) oriented stack, Talairach sectors corresponding to
B, C, D, and E1 in Figure 2 defined the anterior portion of the
cingulate, while sectors E2, E3, F, G, and H defined the posterior
portion. Two of the authors (C.M. and M.S.) performed all
manual tracing of the cingulate blind to subject identity and
diagnosis. Intraclass correlation coefficients of .94 calculated
over two independent raters indicated good interrater reliability
for cingulate volume measurements.

Statistics
Primary analyses involved repeated-measures analysis of vari-

ance (ANOVA) with three grouping factors (PTSD, ETOH,
COHORT) and two within factors (anterior versus posterior and
right versus left). Follow-up analyses considered Talairach ACC
subvolumes B through E1. Analyses of unadjusted volumes were
repeated with adjustment for cerebral tissue volume, cranial
volume, or Wechsler Adult Intelligence Scale (WAIS) vocabulary.
Selected analyses were restricted to nonalcoholic subjects. Post-
traumatic stress disorder effect sizes were estimated via “pooled
d�” (Hedges and Olkin 1985) to accommodate unequal num-
bers of GW and Vietnam cohort members across the four PTSD
by ETOH subgroupings. Finally, correlational analyses were
conducted on ACC volumes and selected continuous PTSD
severity measures to assess parametric covariations.

Results

The ACC was larger in the right hemisphere while the
posterior cingulate cortex (PCC) was larger on the left [interac-
tion of hemisphere and anterior-posterior dimension: F (1,91) �
25.6, p � .001]. There was no main effect of hemisphere and no
interaction between hemisphere and any grouping factor. The
ACC [F (1,91) � 11.7, p � .001] but not the PCC [F(1,91) � .056,
n.s.] was smaller in subjects diagnosed with PTSD [interaction of
PTSD and anterior-posterior factor: F (1,91) � 5.28, p � .024; see
Figure 3). The effect of PTSD on ACC volume did not interact
with ETOH or with COHORT (all Fs � 1). Neither ETOH nor
COHORT was associated with a main effect on ACC volume (all
Fs � 1). No effect or interaction involving PTSD, ETOH, or
COHORT on ACC volume was substantially modified by adjust-
ing for cranial volume, cerebral tissue volume, or WAIS vocab-
ulary. Likewise, the exclusion of seven female subjects had no
impact on the results.

When repeated in ETOH- subjects, the effect of PTSD on total
ACC volume persisted [F (1,51) � 6.77, p � .012]. Posttraumatic
stress disorder effect sizes across the ETOH� and ETOH-
subsamples were comparable (ETOH�: d� � �.71, 95% confi-
Figure 1. Successive coronal slices indicating manual tracings of cingulate

cortical tissue areas on a typical brain.
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ence interval [CI] � �1.34 to �.09; ETOH-: d� � �.78, 95% CI �
1.35 to �.21).
A second repeated-measures ANOVA was performed in

hich the within factors represented a finer parcellation of the
CC (two hemispheres by four Talairach ACC subvolumes B

hough E1). This analysis did not find a significant interaction of
TSD and subvolume [F (3,89) � 2.67, pH-F � .053; ε � .714],
hough there was a trend toward a slightly larger effect at the B
ubvolume roughly corresponding to pregenual ACC (see Figure 4).

When computed across all subjects, a pattern of inverse
orrelations was evident between continuous measures of PTSD
everity and ACC volume (CAPS total severity score: rho[97] �
.332, p � .001; MISS: rho[96] � �.339, p � .001); however, the

orrelation between ACC volume and BDI only approached
ignificance (rho[95] � �.197, p � .053).

igure 2. Sagittal view of the cingulate region of interest (ROI) of a typical
rain upon which has been superimposed a Talairach grid in accordance
ith standard locators.
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igure 3. Comparison of PTSD effects at anterior and posterior cingulate
ortices. PTSD, posttraumatic stress disorder; ACC, anterior cingulate cortex;

CC, posterior cingulate cortex.
Discussion

This analysis of 99 combat veterans confirmed and extended
previous findings. Anterior cingulate cortex volume was ob-
served to be smaller in persons with combat-related PTSD
whether or not they were diagnosed with lifetime alcoholism or
belonged to one of two military/aging cohorts. Statistical adjust-
ment for body size did not modify the results. We did not find
that the effect of PTSD was limited to pregenual ACC. Our data
suggested instead that dorsal ACC, often associated with more
cognitive functions (Bush et al 2000), is also reduced in volume
in PTSD. We did not assess subcallosal cortical volume and
therefore we could not replicate this aspect of the observations of
Rauch et al (2003).

To our knowledge, ACC volume has not been specifically
considered in prior studies of the effects of alcoholism on the
brain. The absence of a COHORT effect on ACC volume is
compatible with two studies that failed to find normative aging
effects on this structure (Jernigan et al 1991; Raz et al 1997).
Acknowledging that the cohorts did not differ greatly in age, this
absence is interesting in light of the exaggerated vulnerability to
aging exhibited by nearby dorsolateral frontal cortex (Raz et al
1998, 2004).

The findings of this study are compatible with data suggesting
the ACC is hypofunctional in PTSD. In addition to those studies
noted in the introduction, functional imaging studies in normal
humans using both MR and positron emission tomography (PET)
have shown that the ACC is activated by tasks requiring behav-
ioral monitoring/inhibition (Kerns et al 2004; Menon et al 2001)
and emotion regulation (Ochsner et al 2002), both domains
relevant to the clinical symptomatology of PTSD. Of special
interest, Hariri et al (2003) found evidence of ACC involvement in
the downregulation of amygdala reponses to generic threat cues
in normal subjects. The directionalities of all these results are
compatible with the observed terminations of cortical afferents
on inhibitory interneurons within the amygdala (Carmichael and
Price 1995; McDonald et al 1996). Notwithstanding the appeal of
a simple ACC hypoactivation model, hyperactivation of ACC in
PTSD subjects during the generation of trauma-related images
has also been reported (Lanius et al 2004; Rauch et al 1996; Shin
et al 1997). Both Zubieta et al (1999) and Liberzon et al (1999)

Figure 4. Comparison of PTSD effects at Talairach subvolumes B–E1 of
anterior cingulate cortex. PTSD, posttraumatic stress disorder.
observed ACC hyperactivation in PTSD patients during exposure

www.sobp.org/journal
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w

o trauma-related sounds. Anterior cingulate cortex hyperactiva-
ion has also been observed during script-driven dissociation
Lanius et al 2002). Relatedly, Gilboa et al (2004) performed an
nalysis of interregional cerebral blood flow (CBF) correlations
uring script-driven imagery and found correlations between
mygdala and ACC metabolism to be positive. As more studies
ecome available, some of these inconsistencies may be resolved
y consideration of differences among anterior cingulate subre-
ions (Bush et al 2000; Vogt et al 1992), between tasks, or
etween the measurements employed. Until then, we should
onsider the full complement of functional interactions between
nterior cingulate and amygdala to be potentially relevant to
TSD.

The effort to understand the contribution of ACC to PTSD can
apitalize on a rich cognitive electrophysiological literature fo-
using on this region. Anterior cingulate cortex gives rise to
ultiple scalp-recordable electrophysiological events, including

he error-related and feedback negativities (Herrmann et al 2004;
olroyd et al 1998; Mathalon et al 2003; Miltner et al 2003) and
idline frontal theta (Asada et al 1999; Gevins et al 1997; Ishii et

l 1999). These phenomena have already exhibited associations
ith anxiety (Aftanas and Golocheikine 2001; Hajcak et al 2003;

nanaga 1998). Their examination in PTSD is now strongly
arranted.
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